Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Glyph: Fast and Accurately Training Deep Neural Networks on Encrypted Data (1911.07101v3)

Published 16 Nov 2019 in cs.LG and stat.ML

Abstract: Big data is one of the cornerstones to enabling and training deep neural networks (DNNs). Because of the lack of expertise, to gain benefits from their data, average users have to rely on and upload their private data to big data companies they may not trust. Due to the compliance, legal, or privacy constraints, most users are willing to contribute only their encrypted data, and lack interests or resources to join the training of DNNs in cloud. To train a DNN on encrypted data in a completely non-interactive way, a recent work proposes a fully homomorphic encryption (FHE)-based technique implementing all activations in the neural network by \textit{Brakerski-Gentry-Vaikuntanathan (BGV)}-based lookup tables. However, such inefficient lookup-table-based activations significantly prolong the training latency of privacy-preserving DNNs. In this paper, we propose, Glyph, a FHE-based scheme to fast and accurately train DNNs on encrypted data by switching between TFHE (Fast Fully Homomorphic Encryption over the Torus) and BGV cryptosystems. Glyph uses logic-operation-friendly TFHE to implement nonlinear activations, while adopts vectorial-arithmetic-friendly BGV to perform multiply-accumulation (MAC) operations. Glyph further applies transfer learning on the training of DNNs to improve the test accuracy and reduce the number of MAC operations between ciphertext and ciphertext in convolutional layers. Our experimental results show Glyph obtains the state-of-the-art test accuracy, but reduces the training latency by $99\%$ over the prior FHE-based technique on various encrypted datasets.

Citations (67)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.