Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fair Division of Mixed Divisible and Indivisible Goods (1911.07048v3)

Published 16 Nov 2019 in cs.GT and cs.MA

Abstract: We study the problem of fair division when the resources contain both divisible and indivisible goods. Classic fairness notions such as envy-freeness (EF) and envy-freeness up to one good (EF1) cannot be directly applied to the mixed goods setting. In this work, we propose a new fairness notion envy-freeness for mixed goods (EFM), which is a direct generalization of both EF and EF1 to the mixed goods setting. We prove that an EFM allocation always exists for any number of agents. We also propose efficient algorithms to compute an EFM allocation for two agents and for $n$ agents with piecewise linear valuations over the divisible goods. Finally, we relax the envy-free requirement, instead asking for $\epsilon$-envy-freeness for mixed goods ($\epsilon$-EFM), and present an algorithm that finds an $\epsilon$-EFM allocation in time polynomial in the number of agents, the number of indivisible goods, and $1/\epsilon$.

Citations (40)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.