New Query Lower Bounds for Submodular Function MInimization (1911.06889v1)
Abstract: We consider submodular function minimization in the oracle model: given black-box access to a submodular set function $f:2{[n]}\rightarrow \mathbb{R}$, find an element of $\arg\min_S {f(S)}$ using as few queries to $f(\cdot)$ as possible. State-of-the-art algorithms succeed with $\tilde{O}(n2)$ queries [LeeSW15], yet the best-known lower bound has never been improved beyond $n$ [Harvey08]. We provide a query lower bound of $2n$ for submodular function minimization, a $3n/2-2$ query lower bound for the non-trivial minimizer of a symmetric submodular function, and a $\binom{n}{2}$ query lower bound for the non-trivial minimizer of an asymmetric submodular function. Our $3n/2-2$ lower bound results from a connection between SFM lower bounds and a novel concept we term the cut dimension of a graph. Interestingly, this yields a $3n/2-2$ cut-query lower bound for finding the global mincut in an undirected, weighted graph, but we also prove it cannot yield a lower bound better than $n+1$ for $s$-$t$ mincut, even in a directed, weighted graph.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.