Papers
Topics
Authors
Recent
2000 character limit reached

Empirical Study of Off-Policy Policy Evaluation for Reinforcement Learning (1911.06854v3)

Published 15 Nov 2019 in cs.LG, cs.AI, cs.RO, and stat.ML

Abstract: We offer an experimental benchmark and empirical study for off-policy policy evaluation (OPE) in reinforcement learning, which is a key problem in many safety critical applications. Given the increasing interest in deploying learning-based methods, there has been a flurry of recent proposals for OPE method, leading to a need for standardized empirical analyses. Our work takes a strong focus on diversity of experimental design to enable stress testing of OPE methods. We provide a comprehensive benchmarking suite to study the interplay of different attributes on method performance. We distill the results into a summarized set of guidelines for OPE in practice. Our software package, the Caltech OPE Benchmarking Suite (COBS), is open-sourced and we invite interested researchers to further contribute to the benchmark.

Citations (142)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.