Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning To Characterize Adversarial Subspaces (1911.06587v1)

Published 15 Nov 2019 in cs.CV

Abstract: Deep Neural Networks (DNNs) are known to be vulnerable to the maliciously generated adversarial examples. To detect these adversarial examples, previous methods use artificially designed metrics to characterize the properties of \textit{adversarial subspaces} where adversarial examples lie. However, we find these methods are not working in practical attack detection scenarios. Because the artificially defined features are lack of robustness and show limitation in discriminative power to detect strong attacks. To solve this problem, we propose a novel adversarial detection method which identifies adversaries by adaptively learning reasonable metrics to characterize adversarial subspaces. As auxiliary context information, \textit{k} nearest neighbors are used to represent the surrounded subspace of the detected sample. We propose an innovative model called Neighbor Context Encoder (NCE) to learn from \textit{k} neighbors context and infer if the detected sample is normal or adversarial. We conduct thorough experiment on CIFAR-10, CIFAR-100 and ImageNet dataset. The results demonstrate that our approach surpasses all existing methods under three settings: \textit{attack-aware black-box detection}, \textit{attack-unaware black-box detection} and \textit{white-box detection}.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.