Feedback Linearization based on Gaussian Processes with event-triggered Online Learning (1911.06565v1)
Abstract: Combining control engineering with nonparametric modeling techniques from machine learning allows to control systems without analytic description using data-driven models. Most existing approaches separate learning, i.e. the system identification based on a fixed dataset, and control, i.e. the execution of the model-based control law. This separation makes the performance highly sensitive to the initial selection of training data and possibly requires very large datasets. This article proposes a learning feedback linearizing control law using online closed-loop identification. The employed Gaussian process model updates its training data only if the model uncertainty becomes too large. This event-triggered online learning ensures high data efficiency and thereby reduces the computational complexity, which is a major barrier for using Gaussian processes under real-time constraints. We propose safe forgetting strategies of data points to adhere to budget constraint and to further increase data-efficiency. We show asymptotic stability for the tracking error under the proposed event-triggering law and illustrate the effective identification and control in simulation.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.