Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

A3GAN: An Attribute-aware Attentive Generative Adversarial Network for Face Aging (1911.06531v1)

Published 15 Nov 2019 in cs.CV

Abstract: Face aging, which aims at aesthetically rendering a given face to predict its future appearance, has received significant research attention in recent years. Although great progress has been achieved with the success of Generative Adversarial Networks (GANs) in synthesizing realistic images, most existing GAN-based face aging methods have two main problems: 1) unnatural changes of high-level semantic information (e.g. facial attributes) due to the insufficient utilization of prior knowledge of input faces, and 2) distortions of low-level image content including ghosting artifacts and modifications in age-irrelevant regions. In this paper, we introduce A3GAN, an Attribute-Aware Attentive face aging model to address the above issues. Facial attribute vectors are regarded as the conditional information and embedded into both the generator and discriminator, encouraging synthesized faces to be faithful to attributes of corresponding inputs. To improve the visual fidelity of generation results, we leverage the attention mechanism to restrict modifications to age-related areas and preserve image details. Moreover, the wavelet packet transform is employed to capture textural features at multiple scales in the frequency space. Extensive experimental results demonstrate the effectiveness of our model in synthesizing photorealistic aged face images and achieving state-of-the-art performance on popular face aging datasets.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.