Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Style-Transfer in Real-Time (1911.06464v2)

Published 15 Nov 2019 in cs.CV, cs.GR, and cs.RO

Abstract: Style transfer aims to combine the content of one image with the artistic style of another. It was discovered that lower levels of convolutional networks captured style information, while higher levels captures content information. The original style transfer formulation used a weighted combination of VGG-16 layer activations to achieve this goal. Later, this was accomplished in real-time using a feed-forward network to learn the optimal combination of style and content features from the respective images. The first aim of our project was to introduce a framework for capturing the style from several images at once. We propose a method that extends the original real-time style transfer formulation by combining the features of several style images. This method successfully captures color information from the separate style images. The other aim of our project was to improve the temporal style continuity from frame to frame. Accordingly, we have experimented with the temporal stability of the output images and discussed the various available techniques that could be employed as alternatives.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Michael Maring (1 paper)
  2. Kaustav Chakraborty (23 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.