Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Human Annotations Improve GAN Performances (1911.06460v1)

Published 15 Nov 2019 in cs.CV

Abstract: Generative Adversarial Networks (GANs) have shown great success in many applications. In this work, we present a novel method that leverages human annotations to improve the quality of generated images. Unlike previous paradigms that directly ask annotators to distinguish between real and fake data in a straightforward way, we propose and annotate a set of carefully designed attributes that encode important image information at various levels, to understand the differences between fake and real images. Specifically, we have collected an annotated dataset that contains 600 fake images and 400 real images. These images are evaluated by 10 workers from the Amazon Mechanical Turk (AMT) based on eight carefully defined attributes. Statistical analyses have revealed different distributions of the proposed attributes between real and fake images. These attributes are shown to be useful in discriminating fake images from real ones, and deep neural networks are developed to automatically predict the attributes. We further utilize the information by integrating the attributes into GANs to generate better images. Experimental results evaluated by multiple metrics show performance improvement of the proposed model.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.