Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-domain Dialogue State Tracking as Dynamic Knowledge Graph Enhanced Question Answering (1911.06192v2)

Published 7 Nov 2019 in cs.CL, cs.AI, cs.LG, and stat.ML

Abstract: Multi-domain dialogue state tracking (DST) is a critical component for conversational AI systems. The domain ontology (i.e., specification of domains, slots, and values) of a conversational AI system is generally incomplete, making the capability for DST models to generalize to new slots, values, and domains during inference imperative. In this paper, we propose to model multi-domain DST as a question answering problem, referred to as Dialogue State Tracking via Question Answering (DSTQA). Within DSTQA, each turn generates a question asking for the value of a (domain, slot) pair, thus making it naturally extensible to unseen domains, slots, and values. Additionally, we use a dynamically-evolving knowledge graph to explicitly learn relationships between (domain, slot) pairs. Our model has a 5.80% and 12.21% relative improvement over the current state-of-the-art model on MultiWOZ 2.0 and MultiWOZ 2.1 datasets, respectively. Additionally, our model consistently outperforms the state-of-the-art model in domain adaptation settings. (Code is released at https://github.com/alexa/dstqa )

Citations (83)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)