Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Convolutional Neural Network for Convective Storm Nowcasting Using 3D Doppler Weather Radar Data (1911.06185v2)

Published 14 Nov 2019 in physics.geo-ph, cs.CV, and physics.ao-ph

Abstract: Convective storms are one of the severe weather hazards found during the warm season. Doppler weather radar is the only operational instrument that can frequently sample the detailed structure of convective storm which has a small spatial scale and short lifetime. For the challenging task of short-term convective storm forecasting, 3-D radar images contain information about the processes in convective storm. However, effectively extracting such information from multisource raw data has been problematic due to a lack of methodology and computation limitations. Recent advancements in deep learning techniques and graphics processing units now make it possible. This article investigates the feasibility and performance of an end-to-end deep learning nowcasting method. The nowcasting problem was transformed into a classification problem first, and then, a deep learning method that uses a convolutional neural network was presented to make predictions. On the first layer of CNN, a cross-channel 3D convolution was proposed to fuse 3D raw data. The CNN method eliminates the handcrafted feature engineering, i.e., the process of using domain knowledge of the data to manually design features. Operationally produced historical data of the Beijing-Tianjin-Hebei region in China was used to train the nowcasting system and evaluate its performance; 3737332 samples were collected in the training data set. The experimental results show that the deep learning method improves nowcasting skills compared with traditional machine learning methods.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.