Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

CMSN: Continuous Multi-stage Network and Variable Margin Cosine Loss for Temporal Action Proposal Generation (1911.06080v3)

Published 14 Nov 2019 in cs.CV

Abstract: Accurately locating the start and end time of an action in untrimmed videos is a challenging task. One of the important reasons is the boundary of action is not highly distinguishable, and the features around the boundary are difficult to discriminate. To address this problem, we propose a novel framework for temporal action proposal generation, namely Continuous Multi-stage Network (CMSN), which divides a video that contains a complete action instance into six stages, namely Backgroud, Ready, Start, Confirm, End, Follow. To distinguish between Ready and Start, End and Follow more accurately, we propose a novel loss function, Variable Margin Cosine Loss (VMCL), which allows for different margins between different categories. Our experiments on THUMOS14 show that the proposed method for temporal proposal generation performs better than the state-of-the-art methods using the same network architecture and training dataset.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.