Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semantic Granularity Metric Learning for Visual Search (1911.06047v1)

Published 14 Nov 2019 in cs.CV and cs.LG

Abstract: Deep metric learning applied to various applications has shown promising results in identification, retrieval and recognition. Existing methods often do not consider different granularity in visual similarity. However, in many domain applications, images exhibit similarity at multiple granularities with visual semantic concepts, e.g. fashion demonstrates similarity ranging from clothing of the exact same instance to similar looks/design or a common category. Therefore, training image triplets/pairs used for metric learning inherently possess different degree of information. However, the existing methods often treats them with equal importance during training. This hinders capturing the underlying granularities in feature similarity required for effective visual search. In view of this, we propose a new deep semantic granularity metric learning (SGML) that develops a novel idea of leveraging attribute semantic space to capture different granularity of similarity, and then integrate this information into deep metric learning. The proposed method simultaneously learns image attributes and embeddings using multitask CNNs. The two tasks are not only jointly optimized but are further linked by the semantic granularity similarity mappings to leverage the correlations between the tasks. To this end, we propose a new soft-binomial deviance loss that effectively integrates the degree of information in training samples, which helps to capture visual similarity at multiple granularities. Compared to recent ensemble-based methods, our framework is conceptually elegant, computationally simple and provides better performance. We perform extensive experiments on benchmark metric learning datasets and demonstrate that our method outperforms recent state-of-the-art methods, e.g., 1-4.5\% improvement in Recall@1 over the previous state-of-the-arts [1],[2] on DeepFashion In-Shop dataset.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.