Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

HUSE: Hierarchical Universal Semantic Embeddings (1911.05978v1)

Published 14 Nov 2019 in cs.CV, cs.CL, and cs.LG

Abstract: There is a recent surge of interest in cross-modal representation learning corresponding to images and text. The main challenge lies in mapping images and text to a shared latent space where the embeddings corresponding to a similar semantic concept lie closer to each other than the embeddings corresponding to different semantic concepts, irrespective of the modality. Ranking losses are commonly used to create such shared latent space -- however, they do not impose any constraints on inter-class relationships resulting in neighboring clusters to be completely unrelated. The works in the domain of visual semantic embeddings address this problem by first constructing a semantic embedding space based on some external knowledge and projecting image embeddings onto this fixed semantic embedding space. These works are confined only to image domain and constraining the embeddings to a fixed space adds additional burden on learning. This paper proposes a novel method, HUSE, to learn cross-modal representation with semantic information. HUSE learns a shared latent space where the distance between any two universal embeddings is similar to the distance between their corresponding class embeddings in the semantic embedding space. HUSE also uses a classification objective with a shared classification layer to make sure that the image and text embeddings are in the same shared latent space. Experiments on UPMC Food-101 show our method outperforms previous state-of-the-art on retrieval, hierarchical precision and classification results.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.