Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

VisionISP: Repurposing the Image Signal Processor for Computer Vision Applications (1911.05931v1)

Published 14 Nov 2019 in eess.IV and cs.CV

Abstract: Traditional image signal processors (ISPs) are primarily designed and optimized to improve the image quality perceived by humans. However, optimal perceptual image quality does not always translate into optimal performance for computer vision applications. We propose a set of methods, which we collectively call VisionISP, to repurpose the ISP for machine consumption. VisionISP significantly reduces data transmission needs by reducing the bit-depth and resolution while preserving the relevant information. The blocks in VisionISP are simple, content-aware, and trainable. Experimental results show that VisionISP boosts the performance of a subsequent computer vision system trained to detect objects in an autonomous driving setting. The results demonstrate the potential and the practicality of VisionISP for computer vision applications.

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.