Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

FAQ-based Question Answering via Knowledge Anchors (1911.05930v2)

Published 14 Nov 2019 in cs.CL

Abstract: Question answering (QA) aims to understand questions and find appropriate answers. In real-world QA systems, Frequently Asked Question (FAQ) based QA is usually a practical and effective solution, especially for some complicated questions (e.g., How and Why). Recent years have witnessed the great successes of knowledge graphs (KGs) in KBQA systems, while there are still few works focusing on making full use of KGs in FAQ-based QA. In this paper, we propose a novel Knowledge Anchor based Question Answering (KAQA) framework for FAQ-based QA to better understand questions and retrieve more appropriate answers. More specifically, KAQA mainly consists of three modules: knowledge graph construction, query anchoring and query-document matching. We consider entities and triples of KGs in texts as knowledge anchors to precisely capture the core semantics, which brings in higher precision and better interpretability. The multi-channel matching strategy also enables most sentence matching models to be flexibly plugged in our KAQA framework to fit different real-world computation limitations. In experiments, we evaluate our models on both offline and online query-document matching tasks on a real-world FAQ-based QA system in WeChat Search, with detailed analysis, ablation tests and case studies. The significant improvements confirm the effectiveness and robustness of the KAQA framework in real-world FAQ-based QA.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.