Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Emotion and Theme Recognition in Music with Frequency-Aware RF-Regularized CNNs (1911.05833v1)

Published 28 Oct 2019 in cs.SD, cs.LG, cs.MM, and eess.AS

Abstract: We present CP-JKU submission to MediaEval 2019; a Receptive Field-(RF)-regularized and Frequency-Aware CNN approach for tagging music with emotion/mood labels. We perform an investigation regarding the impact of the RF of the CNNs on their performance on this dataset. We observe that ResNets with smaller receptive fields -- originally adapted for acoustic scene classification -- also perform well in the emotion tagging task. We improve the performance of such architectures using techniques such as Frequency Awareness and Shake-Shake regularization, which were used in previous work on general acoustic recognition tasks.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.