Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Triply Robust Off-Policy Evaluation (1911.05811v2)

Published 13 Nov 2019 in cs.LG and stat.ML

Abstract: We propose a robust regression approach to off-policy evaluation (OPE) for contextual bandits. We frame OPE as a covariate-shift problem and leverage modern robust regression tools. Ours is a general approach that can be used to augment any existing OPE method that utilizes the direct method. When augmenting doubly robust methods, we call the resulting method Triply Robust. We prove upper bounds on the resulting bias and variance, as well as derive novel minimax bounds based on robust minimax analysis for covariate shift. Our robust regression method is compatible with deep learning, and is thus applicable to complex OPE settings that require powerful function approximators. Finally, we demonstrate superior empirical performance across the standard OPE benchmarks, especially in the case where the logging policy is unknown and must be estimated from data.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.