Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

What do you mean, BERT? Assessing BERT as a Distributional Semantics Model (1911.05758v2)

Published 13 Nov 2019 in cs.CL

Abstract: Contextualized word embeddings, i.e. vector representations for words in context, are naturally seen as an extension of previous noncontextual distributional semantic models. In this work, we focus on BERT, a deep neural network that produces contextualized embeddings and has set the state-of-the-art in several semantic tasks, and study the semantic coherence of its embedding space. While showing a tendency towards coherence, BERT does not fully live up to the natural expectations for a semantic vector space. In particular, we find that the position of the sentence in which a word occurs, while having no meaning correlates, leaves a noticeable trace on the word embeddings and disturbs similarity relationships.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.