Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Representations in Reinforcement Learning:An Information Bottleneck Approach (1911.05695v1)

Published 12 Nov 2019 in cs.LG and cs.AI

Abstract: The information bottleneck principle is an elegant and useful approach to representation learning. In this paper, we investigate the problem of representation learning in the context of reinforcement learning using the information bottleneck framework, aiming at improving the sample efficiency of the learning algorithms. %by accelerating the process of discarding irrelevant information when the %input states are extremely high-dimensional. We analytically derive the optimal conditional distribution of the representation, and provide a variational lower bound. Then, we maximize this lower bound with the Stein variational (SV) gradient method. We incorporate this framework in the advantageous actor critic algorithm (A2C) and the proximal policy optimization algorithm (PPO). Our experimental results show that our framework can improve the sample efficiency of vanilla A2C and PPO significantly. Finally, we study the information bottleneck (IB) perspective in deep RL with the algorithm called mutual information neural estimation(MINE) . We experimentally verify that the information extraction-compression process also exists in deep RL and our framework is capable of accelerating this process. We also analyze the relationship between MINE and our method, through this relationship, we theoretically derive an algorithm to optimize our IB framework without constructing the lower bound.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.