Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Error bounds for some approximate posterior measures in Bayesian inference (1911.05669v2)

Published 13 Nov 2019 in math.ST, cs.NA, math.NA, and stat.TH

Abstract: In certain applications involving the solution of a Bayesian inverse problem, it may not be possible or desirable to evaluate the full posterior, e.g. due to the high computational cost of doing so. This problem motivates the use of approximate posteriors that arise from approximating the data misfit or forward model. We review some error bounds for random and deterministic approximate posteriors that arise when the approximate data misfits and approximate forward models are random.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.