Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adapting and evaluating a deep learning language model for clinical why-question answering (1911.05604v1)

Published 13 Nov 2019 in cs.CL

Abstract: Objectives: To adapt and evaluate a deep learning LLM for answering why-questions based on patient-specific clinical text. Materials and Methods: Bidirectional encoder representations from transformers (BERT) models were trained with varying data sources to perform SQuAD 2.0 style why-question answering (why-QA) on clinical notes. The evaluation focused on: 1) comparing the merits from different training data, 2) error analysis. Results: The best model achieved an accuracy of 0.707 (or 0.760 by partial match). Training toward customization for the clinical language helped increase 6% in accuracy. Discussion: The error analysis suggested that the model did not really perform deep reasoning and that clinical why-QA might warrant more sophisticated solutions. Conclusion: The BERT model achieved moderate accuracy in clinical why-QA and should benefit from the rapidly evolving technology. Despite the identified limitations, it could serve as a competent proxy for question-driven clinical information extraction.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.