Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Concept Drift Adaptive Physical Event Detection for Social Media Streams (1911.05494v1)

Published 17 Sep 2019 in cs.SI, cs.CY, cs.LG, and stat.ML

Abstract: Event detection has long been the domain of physical sensors operating in a static dataset assumption. The prevalence of social media and web access has led to the emergence of social, or human sensors who report on events globally. This warrants development of event detectors that can take advantage of the truly dense and high spatial and temporal resolution data provided by more than 3 billion social users. The phenomenon of concept drift, which causes terms and signals associated with a topic to change over time, renders static machine learning ineffective. Towards this end, we present an application for physical event detection on social sensors that improves traditional physical event detection with concept drift adaptation. Our approach continuously updates its machine learning classifiers automatically, without the need for human intervention. It integrates data from heterogeneous sources and is designed to handle weak-signal events (landslides, wildfires) with around ten posts per event in addition to large-signal events (hurricanes, earthquakes) with hundreds of thousands of posts per event. We demonstrate a landslide detector on our application that detects almost 350% more land-slides compared to static approaches. Our application has high performance: using classifiers trained in 2014, achieving event detection accuracy of 0.988, compared to 0.762 for static approaches.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube