Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning to Communicate in Multi-Agent Reinforcement Learning : A Review (1911.05438v1)

Published 13 Nov 2019 in cs.LG, cs.MA, and stat.ML

Abstract: We consider the issue of multiple agents learning to communicate through reinforcement learning within partially observable environments, with a focus on information asymmetry in the second part of our work. We provide a review of the recent algorithms developed to improve the agents' policy by allowing the sharing of information between agents and the learning of communication strategies, with a focus on Deep Recurrent Q-Network-based models. We also describe recent efforts to interpret the languages generated by these agents and study their properties in an attempt to generate human-language-like sentences. We discuss the metrics used to evaluate the generated communication strategies and propose a novel entropy-based evaluation metric. Finally, we address the issue of the cost of communication and introduce the idea of an experimental setup to expose this cost in cooperative-competitive game.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.