Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Allowing for equal opportunities for artists in music recommendation (1911.05395v1)

Published 13 Nov 2019 in cs.IR and cs.CY

Abstract: Promoting diversity in the music sector is widely discussed on the media. While the major problem may lie deep in our society, music information retrieval contributes to promoting diversity or may create unequal opportunities for artists. For example, considering the known problem of popularity bias in music recommendation, it is important to investigate whether the short head of popular music artists and the long tail of less popular ones show similar patterns of diversity---in terms of, for example, age, gender, or ethnic origin---or the popularity bias amplifies a positive or negative effect. I advocate for reasonable opportunities for artists---for (currently) popular artists and artists in the long-tail alike---in music recommender systems. In this work, I represent the position that we need to develop a deep understanding of the biases and inequalities because it is the essential basis to design approaches for music recommendation that provide reasonable opportunities. Thus, research needs to investigate the various reasons that hinder equal opportunity and diversity in music recommendation.

Citations (9)

Summary

We haven't generated a summary for this paper yet.