Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Coarse-Proxy Reduced Basis Methods for Integral Equations (1911.05331v1)

Published 13 Nov 2019 in math.NA and cs.NA

Abstract: In this paper, we introduce a new reduced basis methodology for accelerating the computation of large parameterized systems of high-fidelity integral equations. Core to our methodology is the use of coarse-proxy models (i.e., lower resolution variants of the underlying high-fidelity equations) to identify important samples in the parameter space from which a high quality reduced basis is then constructed. Unlike the more traditional POD or greedy methods for reduced basis construction, our methodology has the benefit of being both easy to implement and embarrassingly parallel. We apply our methodology to the under-served area of integral equations, where the density of the underlying integral operators has traditionally made reduced basis methods difficult to apply. To handle this difficulty, we introduce an operator interpolation technique, based on random sub-sampling, that is aimed specifically at integral operators. To demonstrate the effectiveness of our techniques, we present two numerical case studies, based on the Radiative Transport Equation and a boundary integral formation of the Laplace Equation respectively, where our methodology provides a significant improvement in performance over the underlying high-fidelity models for a wide range of error tolerances. Moreover, we demonstrate that for these problems, as the coarse-proxy selection threshold is made more aggressive, the approximation error of our method decreases at an approximately linear rate.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.