Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Exploiting Local and Global Structure for Point Cloud Semantic Segmentation with Contextual Point Representations (1911.05277v1)

Published 13 Nov 2019 in cs.CV

Abstract: In this paper, we propose one novel model for point cloud semantic segmentation, which exploits both the local and global structures within the point cloud based on the contextual point representations. Specifically, we enrich each point representation by performing one novel gated fusion on the point itself and its contextual points. Afterwards, based on the enriched representation, we propose one novel graph pointnet module, relying on the graph attention block to dynamically compose and update each point representation within the local point cloud structure. Finally, we resort to the spatial-wise and channel-wise attention strategies to exploit the point cloud global structure and thereby yield the resulting semantic label for each point. Extensive results on the public point cloud databases, namely the S3DIS and ScanNet datasets, demonstrate the effectiveness of our proposed model, outperforming the state-of-the-art approaches. Our code for this paper is available at https://github.com/fly519/ELGS.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.