Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Unsupervised Medical Image Segmentation with Adversarial Networks: From Edge Diagrams to Segmentation Maps (1911.05140v1)

Published 12 Nov 2019 in eess.IV, cs.AI, cs.CV, and cs.LG

Abstract: We develop and approach to unsupervised semantic medical image segmentation that extends previous work with generative adversarial networks. We use existing edge detection methods to construct simple edge diagrams, train a generative model to convert them into synthetic medical images, and construct a dataset of synthetic images with known segmentations using variations on extracted edge diagrams. This synthetic dataset is then used to train a supervised image segmentation model. We test our approach on a clinical dataset of kidney ultrasound images and the benchmark ISIC 2018 skin lesion dataset. We show that our unsupervised approach is more accurate than previous unsupervised methods, and performs reasonably compared to supervised image segmentation models. All code and trained models are available at https://github.com/kiretd/Unsupervised-MIseg.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.