Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Constructing Gradient Controllable Recurrent Neural Networks Using Hamiltonian Dynamics (1911.05035v2)

Published 11 Nov 2019 in cs.LG, cs.NA, math.NA, math.OC, and stat.ML

Abstract: Recurrent neural networks (RNNs) have gained a great deal of attention in solving sequential learning problems. The learning of long-term dependencies, however, remains challenging due to the problem of a vanishing or exploding hidden states gradient. By exploring further the recently established connections between RNNs and dynamical systems we propose a novel RNN architecture, which we call a Hamiltonian recurrent neural network (Hamiltonian RNN), based on a symplectic discretization of an appropriately chosen Hamiltonian system. The key benefit of this approach is that the corresponding RNN inherits the favorable long time properties of the Hamiltonian system, which in turn allows us to control the hidden states gradient with a hyperparameter of the Hamiltonian RNN architecture. This enables us to handle sequential learning problems with arbitrary sequence lengths, since for a range of values of this hyperparameter the gradient neither vanishes nor explodes. Additionally, we provide a heuristic for the optimal choice of the hyperparameter, which we use in our numerical simulations to illustrate that the Hamiltonian RNN is able to outperform other state-of-the-art RNNs without the need of computationally intensive hyperparameter optimization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube