Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning from the Past: Continual Meta-Learning via Bayesian Graph Modeling (1911.04695v1)

Published 12 Nov 2019 in cs.LG and stat.ML

Abstract: Meta-learning for few-shot learning allows a machine to leverage previously acquired knowledge as a prior, thus improving the performance on novel tasks with only small amounts of data. However, most mainstream models suffer from catastrophic forgetting and insufficient robustness issues, thereby failing to fully retain or exploit long-term knowledge while being prone to cause severe error accumulation. In this paper, we propose a novel Continual Meta-Learning approach with Bayesian Graph Neural Networks (CML-BGNN) that mathematically formulates meta-learning as continual learning of a sequence of tasks. With each task forming as a graph, the intra- and inter-task correlations can be well preserved via message-passing and history transition. To remedy topological uncertainty from graph initialization, we utilize Bayes by Backprop strategy that approximates the posterior distribution of task-specific parameters with amortized inference networks, which are seamlessly integrated into the end-to-end edge learning. Extensive experiments conducted on the miniImageNet and tieredImageNet datasets demonstrate the effectiveness and efficiency of the proposed method, improving the performance by 42.8% compared with state-of-the-art on the miniImageNet 5-way 1-shot classification task.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com