Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Equalization Loss for Large Vocabulary Instance Segmentation (1911.04692v1)

Published 12 Nov 2019 in cs.CV

Abstract: Recent object detection and instance segmentation tasks mainly focus on datasets with a relatively small set of categories, e.g. Pascal VOC with 20 classes and COCO with 80 classes. The new large vocabulary dataset LVIS brings new challenges to conventional methods. In this work, we propose an equalization loss to solve the long tail of rare categories problem. Combined with exploiting the data from detection datasets to alleviate the effect of missing-annotation problems during the training, our method achieves 5.1\% overall AP gain and 11.4\% AP gain of rare categories on LVIS benchmark without any bells and whistles compared to Mask R-CNN baseline. Finally we achieve 28.9 mask AP on the test-set of the LVIS and rank 1st place in LVIS Challenge 2019.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube