Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

FLEN: Leveraging Field for Scalable CTR Prediction (1911.04690v4)

Published 12 Nov 2019 in cs.IR and cs.LG

Abstract: Click-Through Rate (CTR) prediction has been an indispensable component for many industrial applications, such as recommendation systems and online advertising. CTR prediction systems are usually based on multi-field categorical features, i.e., every feature is categorical and belongs to one and only one field. Modeling feature conjunctions is crucial for CTR prediction accuracy. However, it requires a massive number of parameters to explicitly model all feature conjunctions, which is not scalable for real-world production systems. In this paper, we describe a novel Field-Leveraged Embedding Network (FLEN) which has been deployed in the commercial recommender system in Meitu and serves the main traffic. FLEN devises a field-wise bi-interaction pooling technique. By suitably exploiting field information, the field-wise bi-interaction pooling captures both inter-field and intra-field feature conjunctions with a small number of model parameters and an acceptable time complexity for industrial applications. We show that a variety of state-of-the-art CTR models can be expressed under this technique. Furthermore, we develop Dicefactor: a dropout technique to prevent independent latent features from co-adapting. Extensive experiments, including offline evaluations and online A/B testing on real production systems, demonstrate the effectiveness and efficiency of FLEN against the state-of-the-arts. Notably, FLEN has obtained 5.19% improvement on CTR with 1/6 of memory usage and computation time, compared to last version (i.e. NFM).

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.