Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Global Convergence of Policy Gradient for Sequential Zero-Sum Linear Quadratic Dynamic Games (1911.04672v1)

Published 12 Nov 2019 in eess.SY, cs.SY, and math.OC

Abstract: We propose projection-free sequential algorithms for linear-quadratic dynamics games. These policy gradient based algorithms are akin to Stackelberg leadership model and can be extended to model-free settings. We show that if the leader performs natural gradient descent/ascent, then the proposed algorithm has a global sublinear convergence to the Nash equilibrium. Moreover, if the leader adopts a quasi-Newton policy, the algorithm enjoys a global quadratic convergence. Along the way, we examine and clarify the intricacies of adopting sequential policy updates for LQ games, namely, issues pertaining to stabilization, indefinite cost structure, and circumventing projection steps.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.