Papers
Topics
Authors
Recent
2000 character limit reached

Neural Contextual Bandits with UCB-based Exploration (1911.04462v3)

Published 11 Nov 2019 in cs.LG and stat.ML

Abstract: We study the stochastic contextual bandit problem, where the reward is generated from an unknown function with additive noise. No assumption is made about the reward function other than boundedness. We propose a new algorithm, NeuralUCB, which leverages the representation power of deep neural networks and uses a neural network-based random feature mapping to construct an upper confidence bound (UCB) of reward for efficient exploration. We prove that, under standard assumptions, NeuralUCB achieves $\tilde O(\sqrt{T})$ regret, where $T$ is the number of rounds. To the best of our knowledge, it is the first neural network-based contextual bandit algorithm with a near-optimal regret guarantee. We also show the algorithm is empirically competitive against representative baselines in a number of benchmarks.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com