Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Structural Pruning in Deep Neural Networks: A Small-World Approach (1911.04453v1)

Published 11 Nov 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Deep Neural Networks (DNNs) are usually over-parameterized, causing excessive memory and interconnection cost on the hardware platform. Existing pruning approaches remove secondary parameters at the end of training to reduce the model size; but without exploiting the intrinsic network property, they still require the full interconnection to prepare the network. Inspired by the observation that brain networks follow the Small-World model, we propose a novel structural pruning scheme, which includes (1) hierarchically trimming the network into a Small-World model before training, (2) training the network for a given dataset, and (3) optimizing the network for accuracy. The new scheme effectively reduces both the model size and the interconnection needed before training, achieving a locally clustered and globally sparse model. We demonstrate our approach on LeNet-5 for MNIST and VGG-16 for CIFAR-10, decreasing the number of parameters to 2.3% and 9.02% of the baseline model, respectively.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.