Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Visualizing and Understanding Self-attention based Music Tagging (1911.04385v1)

Published 11 Nov 2019 in cs.SD and eess.AS

Abstract: Recently, we proposed a self-attention based music tagging model. Different from most of the conventional deep architectures in music information retrieval, which use stacked 3x3 filters by treating music spectrograms as images, the proposed self-attention based model attempted to regard music as a temporal sequence of individual audio events. Not only the performance, but it could also facilitate better interpretability. In this paper, we mainly focus on visualizing and understanding the proposed self-attention based music tagging model.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.