Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

GRASS: Graph Spectral Sparsification Leveraging Scalable Spectral Perturbation Analysis (1911.04382v3)

Published 4 Nov 2019 in cs.DS, cs.NA, cs.SI, and math.NA

Abstract: Spectral graph sparsification aims to find ultra-sparse subgraphs whose Laplacian matrix can well approximate the original Laplacian eigenvalues and eigenvectors. In recent years, spectral sparsification techniques have been extensively studied for accelerating various numerical and graph-related applications. Prior nearly-linear-time spectral sparsification methods first extract low-stretch spanning tree from the original graph to form the backbone of the sparsifier, and then recover small portions of spectrally-critical off-tree edges to the spanning tree to significantly improve the approximation quality. However, it is not clear how many off-tree edges should be recovered for achieving a desired spectral similarity level within the sparsifier. Motivated by recent graph signal processing techniques, this paper proposes a similarity-aware spectral graph sparsification framework that leverages efficient spectral off-tree edge embedding and filtering schemes to construct spectral sparsifiers with guaranteed spectral similarity (relative condition number) level. An iterative graph densification scheme is also introduced to facilitate efficient and effective filtering of off-tree edges for highly ill-conditioned problems. The proposed method has been validated using various kinds of graphs obtained from public domain sparse matrix collections relevant to VLSI CAD, finite element analysis, as well as social and data networks frequently studied in many machine learning and data mining applications. For instance, a sparse SDD matrix with 40 million unknowns and 180 million nonzeros can be solved (1E-3 accuracy level) within two minutes using a single CPU core and about 6GB memory.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)