Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Conditionally Learn to Pay Attention for Sequential Visual Task (1911.04365v1)

Published 11 Nov 2019 in cs.CV and cs.LG

Abstract: Sequential visual task usually requires to pay attention to its current interested object conditional on its previous observations. Different from popular soft attention mechanism, we propose a new attention framework by introducing a novel conditional global feature which represents the weak feature descriptor of the current focused object. Specifically, for a standard CNN (Convolutional Neural Network) pipeline, the convolutional layers with different receptive fields are used to produce the attention maps by measuring how the convolutional features align to the conditional global feature. The conditional global feature can be generated by different recurrent structure according to different visual tasks, such as a simple recurrent neural network for multiple objects recognition, or a moderate complex LLM for image caption. Experiments show that our proposed conditional attention model achieves the best performance on the SVHN (Street View House Numbers) dataset with / without extra bounding box; and for image caption, our attention model generates better scores than the popular soft attention model.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.