Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stochastic Difference-of-Convex Algorithms for Solving nonconvex optimization problems (1911.04334v2)

Published 11 Nov 2019 in math.NA, cs.NA, and math.OC

Abstract: The paper deals with stochastic difference-of-convex functions (DC) programs, that is, optimization problems whose the cost function is a sum of a lower semicontinuous DC function and the expectation of a stochastic DC function with respect to a probability distribution. This class of nonsmooth and nonconvex stochastic optimization problems plays a central role in many practical applications. Although there are many contributions in the context of convex and/or smooth stochastic optimization, algorithms dealing with nonconvex and nonsmooth programs remain rare. In deterministic optimization literature, the DC Algorithm (DCA) is recognized to be one of the few algorithms to solve effectively nonconvex and nonsmooth optimization problems. The main purpose of this paper is to present some new stochastic DCAs for solving stochastic DC programs. The convergence analysis of the proposed algorithms is carefully studied, and numerical experiments are conducted to justify the algorithms' behaviors.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.