Papers
Topics
Authors
Recent
2000 character limit reached

Convergence to minima for the continuous version of Backtracking Gradient Descent (1911.04221v2)

Published 11 Nov 2019 in math.OC, cs.LG, cs.NA, math.NA, and stat.ML

Abstract: The main result of this paper is: {\bf Theorem.} Let $f:\mathbb{R}k\rightarrow \mathbb{R}$ be a $C{1}$ function, so that $\nabla f$ is locally Lipschitz continuous. Assume moreover that $f$ is $C2$ near its generalised saddle points. Fix real numbers $\delta_0>0$ and $0<\alpha <1$. Then there is a smooth function $h:\mathbb{R}k\rightarrow (0,\delta_0]$ so that the map $H:\mathbb{R}k\rightarrow \mathbb{R}k$ defined by $H(x)=x-h(x)\nabla f(x)$ has the following property: (i) For all $x\in \mathbb{R}k$, we have $f(H(x)))-f(x)\leq -\alpha h(x)||\nabla f(x)||2$. (ii) For every $x_0\in \mathbb{R}k$, the sequence $x_{n+1}=H(x_n)$ either satisfies $\lim_{n\rightarrow\infty}||x_{n+1}-x_n||=0$ or $ \lim_{n\rightarrow\infty}||x_n||=\infty$. Each cluster point of ${x_n}$ is a critical point of $f$. If moreover $f$ has at most countably many critical points, then ${x_n}$ either converges to a critical point of $f$ or $\lim_{n\rightarrow\infty}||x_n||=\infty$. (iii) There is a set $\mathcal{E}1\subset \mathbb{R}k$ of Lebesgue measure $0$ so that for all $x_0\in \mathbb{R}k\backslash \mathcal{E}_1$, the sequence $x{n+1}=H(x_n)$, {\bf if converges}, cannot converge to a {\bf generalised} saddle point. (iv) There is a set $\mathcal{E}2\subset \mathbb{R}k$ of Lebesgue measure $0$ so that for all $x_0\in \mathbb{R}k\backslash \mathcal{E}_2$, any cluster point of the sequence $x{n+1}=H(x_n)$ is not a saddle point, and more generally cannot be an isolated generalised saddle point. Some other results are proven.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.