Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A unified sequence-to-sequence front-end model for Mandarin text-to-speech synthesis (1911.04111v1)

Published 11 Nov 2019 in cs.CL, cs.SD, and eess.AS

Abstract: In Mandarin text-to-speech (TTS) system, the front-end text processing module significantly influences the intelligibility and naturalness of synthesized speech. Building a typical pipeline-based front-end which consists of multiple individual components requires extensive efforts. In this paper, we proposed a unified sequence-to-sequence front-end model for Mandarin TTS that converts raw texts to linguistic features directly. Compared to the pipeline-based front-end, our unified front-end can achieve comparable performance in polyphone disambiguation and prosody word prediction, and improve intonation phrase prediction by 0.0738 in F1 score. We also implemented the unified front-end with Tacotron and WaveRNN to build a Mandarin TTS system. The synthesized speech by that got a comparable MOS (4.38) with the pipeline-based front-end (4.37) and close to human recordings (4.49).

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.