Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Context-aware Active Multi-Step Reinforcement Learning (1911.04107v2)

Published 11 Nov 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Reinforcement learning has attracted great attention recently, especially policy gradient algorithms, which have been demonstrated on challenging decision making and control tasks. In this paper, we propose an active multi-step TD algorithm with adaptive stepsizes to learn actor and critic. Specifically, our model consists of two components: active stepsize learning and adaptive multi-step TD algorithm. Firstly, we divide the time horizon into chunks and actively select state and action inside each chunk. Then given the selected samples, we propose the adaptive multi-step TD, which generalizes TD($\lambda$), but adaptively switch on/off the backups from future returns of different steps. Particularly, the adaptive multi-step TD introduces a context-aware mechanism, here a binary classifier, which decides whether or not to turn on its future backups based on the context changes. Thus, our model is kind of combination of active learning and multi-step TD algorithm, which has the capacity for learning off-policy without the need of importance sampling. We evaluate our approach on both discrete and continuous space tasks in an off-policy setting respectively, and demonstrate competitive results compared to other reinforcement learning baselines.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube