Papers
Topics
Authors
Recent
2000 character limit reached

Collaborative Homomorphic Computation on Data Encrypted under Multiple Keys (1911.04101v1)

Published 11 Nov 2019 in cs.CR and cs.LG

Abstract: Homomorphic encryption (HE) is a promising cryptographic technique for enabling secure collaborative machine learning in the cloud. However, support for homomorphic computation on ciphertexts under multiple keys is inefficient. Current solutions often require key setup before any computation or incur large ciphertext size (at best, grow linearly to the number of involved keys). In this paper, we proposed a new approach that leverages threshold and multi-key HE to support computations on ciphertexts under different keys. Our new approach removes the need for key setup between each client and the set of model owners. At the same time, this approach reduces the number of encrypted models to be offloaded to the cloud evaluator, and the ciphertext size with a dimension reduction from (N+1)x2 to 2x2. We present the details of each step and discuss the complexity and security of our approach.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.