Transformation of low-quality device-recorded speech to high-quality speech using improved SEGAN model (1911.03952v2)
Abstract: Nowadays vast amounts of speech data are recorded from low-quality recorder devices such as smartphones, tablets, laptops, and medium-quality microphones. The objective of this research was to study the automatic generation of high-quality speech from such low-quality device-recorded speech, which could then be applied to many speech-generation tasks. In this paper, we first introduce our new device-recorded speech dataset then propose an improved end-to-end method for automatically transforming the low-quality device-recorded speech into professional high-quality speech. Our method is an extension of a generative adversarial network (GAN)-based speech enhancement model called speech enhancement GAN (SEGAN), and we present two modifications to make model training more robust and stable. Finally, from a large-scale listening test, we show that our method can significantly enhance the quality of device-recorded speech signals.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.