Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Using LSTMs for climate change assessment studies on droughts and floods (1911.03941v2)

Published 10 Nov 2019 in cs.LG, physics.ao-ph, and stat.ML

Abstract: Climate change affects occurrences of floods and droughts worldwide. However, predicting climate impacts over individual watersheds is difficult, primarily because accurate hydrological forecasts require models that are calibrated to past data. In this work we present a large-scale LSTM-based modeling approach that -- by training on large data sets -- learns a diversity of hydrological behaviors. Previous work shows that this model is more accurate than current state-of-the-art models, even when the LSTM-based approach operates out-of-sample and the latter in-sample. In this work, we show how this model can assess the sensitivity of the underlying systems with regard to extreme (high and low) flows in individual watersheds over the continental US.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.