Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Translationese as a Language in "Multilingual" NMT (1911.03823v2)

Published 10 Nov 2019 in cs.CL

Abstract: Machine translation has an undesirable propensity to produce "translationese" artifacts, which can lead to higher BLEU scores while being liked less by human raters. Motivated by this, we model translationese and original (i.e. natural) text as separate languages in a multilingual model, and pose the question: can we perform zero-shot translation between original source text and original target text? There is no data with original source and original target, so we train sentence-level classifiers to distinguish translationese from original target text, and use this classifier to tag the training data for an NMT model. Using this technique we bias the model to produce more natural outputs at test time, yielding gains in human evaluation scores on both accuracy and fluency. Additionally, we demonstrate that it is possible to bias the model to produce translationese and game the BLEU score, increasing it while decreasing human-rated quality. We analyze these models using metrics to measure the degree of translationese in the output, and present an analysis of the capriciousness of heuristically-based train-data tagging.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.