Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Communication, Universal Graphs, and Graph Labeling (1911.03757v1)

Published 9 Nov 2019 in cs.CC, cs.DM, and cs.DS

Abstract: We introduce a communication model called universal SMP, in which Alice and Bob receive a function $f$ belonging to a family $\mathcal{F}$, and inputs $x$ and $y$. Alice and Bob use shared randomness to send a message to a third party who cannot see $f, x, y$, or the shared randomness, and must decide $f(x,y)$. Our main application of universal SMP is to relate communication complexity to graph labeling, where the goal is to give a short label to each vertex in a graph, so that adjacency or other functions of two vertices $x$ and $y$ can be determined from the labels $\ell(x),\ell(y)$. We give a universal SMP protocol using $O(k2)$ bits of communication for deciding whether two vertices have distance at most $k$ on distributive lattices (generalizing the $k$-Hamming Distance problem in communication complexity), and explain how this implies an $O(k2\log n)$ labeling scheme for determining $\mathrm{dist}(x,y) \leq k$ on distributive lattices with size $n$; in contrast, we show that a universal SMP protocol for determining $\mathrm{dist}(x,y) \leq 2$ in modular lattices (a superset of distributive lattices) has super-constant $\Omega(n{1/4})$ communication cost. On the other hand, we demonstrate that many graph families known to have efficient adjacency labeling schemes, such as trees, low-arboricity graphs, and planar graphs, admit constant-cost communication protocols for adjacency. Trees also have an $O(k)$ protocol for deciding $\mathrm{dist}(x,y) \leq k$ and planar graphs have an $O(1)$ protocol for $\mathrm{dist}(x,y) \leq 2$, which implies a new $O(\log n)$ labeling scheme for the same problem on planar graphs.

Citations (14)

Summary

We haven't generated a summary for this paper yet.