Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Quantum speedups need structure (1911.03748v2)

Published 9 Nov 2019 in cs.CC, cs.CR, cs.DM, math.CO, and math.PR

Abstract: We prove the following conjecture, raised by Aaronson and Ambainis in 2008: Let $f:{-1,1}n \rightarrow [-1,1]$ be a multilinear polynomial of degree $d$. Then there exists a variable $x_i$ whose influence on $f$ is at least $\mathrm{poly}(\mathrm{Var}(f)/d)$. As was shown by Aaronson and Ambainis, this result implies the following well-known conjecture on the power of quantum computing, dating back to 1999: Let $Q$ be a quantum algorithm that makes $T$ queries to a Boolean input and let $\epsilon,\delta > 0$. Then there exists a deterministic classical algorithm that makes $\mathrm{poly}(T,1/\epsilon,1/\delta)$ queries to the input and that approximates $Q$'s acceptance probability to within an additive error $\epsilon$ on a $1-\delta$ fraction of inputs. In other words, any quantum algorithm can be simulated on most inputs by a classical algorithm which is only polynomially slower, in terms of query complexity.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com