Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Reinforced Generation of Adversarial Examples for Neural Machine Translation (1911.03677v2)

Published 9 Nov 2019 in cs.CL and cs.LG

Abstract: Neural machine translation systems tend to fail on less decent inputs despite its significant efficacy, which may significantly harm the credibility of this systems-fathoming how and when neural-based systems fail in such cases is critical for industrial maintenance. Instead of collecting and analyzing bad cases using limited handcrafted error features, here we investigate this issue by generating adversarial examples via a new paradigm based on reinforcement learning. Our paradigm could expose pitfalls for a given performance metric, e.g., BLEU, and could target any given neural machine translation architecture. We conduct experiments of adversarial attacks on two mainstream neural machine translation architectures, RNN-search, and Transformer. The results show that our method efficiently produces stable attacks with meaning-preserving adversarial examples. We also present a qualitative and quantitative analysis for the preference pattern of the attack, demonstrating its capability of pitfall exposure.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.