Papers
Topics
Authors
Recent
2000 character limit reached

Worst Cases Policy Gradients (1911.03618v1)

Published 9 Nov 2019 in cs.LG and cs.AI

Abstract: Recent advances in deep reinforcement learning have demonstrated the capability of learning complex control policies from many types of environments. When learning policies for safety-critical applications, it is essential to be sensitive to risks and avoid catastrophic events. Towards this goal, we propose an actor-critic framework that models the uncertainty of the future and simultaneously learns a policy based on that uncertainty model. Specifically, given a distribution of the future return for any state and action, we optimize policies for varying levels of conditional Value-at-Risk. The learned policy can map the same state to different actions depending on the propensity for risk. We demonstrate the effectiveness of our approach in the domain of driving simulations, where we learn maneuvers in two scenarios. Our learned controller can dynamically select actions along a continuous axis, where safe and conservative behaviors are found at one end while riskier behaviors are found at the other. Finally, when testing with very different simulation parameters, our risk-averse policies generalize significantly better compared to other reinforcement learning approaches.

Citations (70)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.